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Summary 
 
A strain energy potential is developed to represent isotropic, medium-density, elastomeric 
foams under predominately compressive volumetric states. The potential is proven to be 
polyconvex and coercive, and is thus stable for all admissible loadings. The potential 
includes terms that capture the increase in hydrostatic and deviatoric stiffnesses as the 
relative volume decreases to and slightly beyond full consolidation, i.e., the phenomenon 
commonly called “lock-up”. The model is shown to accurately replicate the axial 
compressive stress and secant shear modulus from combined uni-axial stress/torsion 
experiments. An appropriate viscoelastic formulation for the potential is summarized. 
The potential and viscoelastic option are implemented in the explicit finite element code 
DYNA3D (Zywicz and Lin, 2014) as material model 67.  
 

1 INTRODUCTION 
Polymer-based elastomeric foams are used in many applications, and their mechanical 
behavior and properties have received much attention (see e.g., Gibson and Ashby, 
1977). The mechanical response of medium-density foams, those with relative densities 
between 0.1 and 0.9, is often idealize in the same manner as low-density foam. This 
includes hyperelastic potentials and phenomenological based models.  The difficulty with 
both approaches is they are often only accurate and stable for a subset of deformations 
that commonly exclude volumetric states near full consolidation, i.e., lock-up. 
Surprisingly, few micro-mechanically based hyperelastic formulations have been 
developed for medium-density foams. 
 
Danielsson, Parks, and Boyce (2004) developed a hyperelastic constitutive relationship 
for porous elastomeric media. The micro-mechanically based model is based upon a 
hollow incompressible Neo-Hookean sphere subjected to a kinematically admissible 
displacement field. The system energy is calculated in terms of imposed macro strain 
invariants and then normalized by the system volume. The resultant strain energy 
potential is defined in terms of the matrix material Neo-Hookean parameter, the initial 
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void volume fraction, and two macro strain invariants. The model yields initial shear and 
bulk moduli that are in agreement with other micro-mechanical based approaches. The 
constitutive relationship predicts that the deviatoric and volumetric stiffnesses increase 
non-linearly as the relative volume decreases consistent with experimental observations 
and detailed finite element simulations. Lewis (2005) independently developed a similar 
constitutive model with a Mooney-Rivlin matrix idealization. Although the derivation 
utilized a different kinematic formulation, the resulting constitutive model is identical to 
that of Danielsson et al. when only the Neo-Hookean terms are retained.   
 
The Danielsson et al. potential has several shortcomings. The potential contains a 
singularity when the relative volume reaches lock-up that causes an infinite bulk 
modulus. For truly incompressible materials, this is reasonable. However, this renders the 
potential inappropriate for modeling foams with slightly compressible matrix material 
near and beyond lock-up - which is the focus of this model. For initial void volume 
fractions greater than about 0.7, the potential is not polyconvex and thus may generate 
non-real wave speeds in this regime.  Furthermore, the potential does not replicate the 
initial linear and plateau region responses normally observed in uni-axial and volumetric 
compression and appears to overpredict how much the shear stiffness increases with 
compression, especially near lock-up. (Note, this model was developed for tensile 
volumetric loadings, and the later deficiencies pertain to compressive volumetric states.) 
Unfortunately, neither the potential nor formulation easily lends themselves to the 
inclusion of a compressible matrix.  
 
The goal of the present work is to develop a hyperelastic constitutive model for medium 
density foams subjected to combined compression and shear for use in numerical 
calculations. The loading condition of primary interest resembles plane strain 
compression with small, superimposed transvers shears.  The model needs to accurately 
represent the axial stress and transverse shear stresses for relative volumes from 1-fo/3 to 
slightly beyond lock-up (1-fo). Here fo denotes the initial void volume fraction of the 
foam.  
 
This report is organized as follows. Section 2 discusses stability and related requirements 
for strain energy potentials. In section 3, the proposed strain energy function is presented 
and its stability, i.e., polyconvexity, is proven. A viscoelastic formulation appropriate for 
the proposed hyperelastic potential is summarized in Section 4.  Section 5 describes the 
experimental data that motivated this potential and shows the ability of the current 
potential to replicate the desired behavior. In Appendix A, the polyconvexity of several 
strain energy terms are evaluated in detail. 
 

2 STABILITY REQUIREMENTS 
In order to yield unique solutions in elasto-static and elasto-dynamic problems, various 
requirements are imposed on strain energy potentials. Potentials should represent the 
material stress-free in its natural state and the value of the potentials should approach ∞  
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as J→ 0+  and as J→∞ , where J is the determinate of the deformation gradient F. Most 
importantly, the potential must be “stable”.  
 
Drucker stability (e.g., Drucker, 1959), as applied to hyperelastic materials, requires that 
the material tangent stiffness matrix, based on the Kirchhoff stress and logarithmic strain, 
be symmetric and positive definite. This point-wise requirement ensures that the acoustic 
tensor is positive definite, i.e., yields real wave speeds, and that the governing differential 
equations remain elliptical. A potential need only satisfy this requirement for 
deformations of interest. For isotropic materials, the range of stability for a specific 
potential can normally be identified a priori and curve-fitted parameters can be modified 
to alter the stable range. 
 
Polyconvexity (Ball, 1977) is a stronger requirement than Drucker stability. Strain energy 
potentials that satisfy the polyconvexity condition guarantee ellipticity and, when 
combined with coercivity, ensure the existence of minimizers. Polyconvexity requires 
that the strain energy density function be definable in terms of F, Adj F, and Det (F) (=J), 
where Adj denotes the adjugate of F (=JF-1) (Schroder and Neff, 2002). The function 
must be convex over its entire admissible domain with respect to the nineteen primary 
variables, i.e., J and the components of F and Adj F. By convex, it is meant that the 
Hessian matrix is positive semi-definite for all admissible F. For isotropic materials, it is 
sufficient to define the potential in terms of the regular or isochoric strain invariants of 
the right (C) or left (B) Cauchy-Green deformation tensors since these invariants can be 
written in terms of F as I1 = F

2 , I2 = Adj F 2 , I3 = Det F( )( )
2
, I1 = F

2 Det F( )( )
2 3

, 

and I2 = Adj F 2 Det F( )( )
4 3

 (Hartmann and Neff, 2003).  To determine if an isotropic 
potential expressed in terms of the strain invariants is convex, the Hessian is calculated 
with respect to the independent variables F , Adj F , and J, as appropriate, and 
examined to see if it is positive semi-definite. For potentials with just one independent 
variable, polyconvexity requires the second derivative be non-negative. Polyconvex 
potentials possess the added benefit that when summed the resultant potential is also 
polyconvex.  
 
Coercivity pertains to how functions behave as their arguments tend toward large, in 
magnitude, values. The coercivity condition for strain energy potentials is expressed as an 
inequality as 

W F( ) ≥α F p
+ Adj F q

+ Det F( )( )
r( )+β  

with α > 0 , β ≥ 0 , p ≥ 2 , q ≥ p p−1 , and r >1  (Ebbing, 2010). If admissible values for 
the associated terms can be found, then the potential is coercive. For potentials that are 
sums of positive terms, the entire potential is coercive if one or more term is coercive. 
 
Convexity of a strain energy potential is a stronger and generally harder to prove 
requirement than polyconvexity. Convexity requires the Hessian matrix of the potential to 
be positive (semi-) definite for all admissible F. Here, the independent variables are the 
nine components of F. Potentials that are convex (in the convexity sense) are also 
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polyconvex although the opposite is not necessarily true. Unfortunately, convexity 
precludes certain desirable physical requirements and functional forms. For example, the 
term Det(H) is not convex and therefore terms that are function of only J are never 
convex. 
 
In practical application, non-polyconvex potentials that satisfy Drucker stability in only 
limited domains are often used in numerical calculations. For example, the Odgen 
potential is polyconvex provided its coefficients satisfy certain requirements. When the 
potential is curve fit to experimental data, coefficients sometimes arise that violate these 
requirements but improve the fit in certain stretch regions. Although the resultant 
potential is not polyconvex, it often satisfies Drucker stability for certain deformation 
regimes and is useful nonetheless. 
 
For the purposes herein, acceptable strain energy potentials are limited to those that are 
polyconvex and coercive. For additional discussion on convexity, polyconvexity, 
coercivity, and related topics see, e.g., Ebbing (2010), Hartmann and Neff (2003), and 
Schroder and Neff (2002). 
 

3 STRAIN ENERGY POTENTIAL  
The proposed strain energy potential is given by 

W = A0 J −1− A1 ln 1+
J −1
A1

"

#
$

%

&
'

"

#
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&
''H1 J − (J( )+ (A2
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−1− ln J
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"
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+B0 1− J +
1
B1
exp B1 J −1( )( )−1( )

"
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'+C0
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JC2
+D0 I1 −3( )

 
where 

!A2 = A2 1− A1( )2 , 

H1(x) =
0 x < 0
1 x ≥ 0

"
#
$

 and H2 (x) =
0 x ≤ 0
1 x > 0

"
#
$

, 

!J = 1− A1( )
!A2 + A0A1 !A2
!A2 − A0A1

,  

and 

A3 =
!A2 !J 1− A1 − !J( )

A0 !J (1− !J )+ !A2 1− A1 − !J( )
. 

For this potential, the Cauchy pressure p is given by 
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−p = ∂W
∂J

= A0 1−
1
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(H2 )J − J( )

+B0 exp B1 J −1( )( )−1( )+C0C2
I1 −3( )
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The A0  term in the potential causes the pressure to increase rapidly as J→ 1− A3( )+ , 
where 1− A3  is the relative volume at lock-up, and A3 is approximately the initial void 
volume fraction.  The !A2  term represents the bulk response of the fully consolidated 
material and is based on the polyconvex volumetric strain energy potential 
K Ĵ −1− ln Ĵ( )( )  (Miehe, 1994). The !A2  term is formed by using a multiplicative 

representation of the relative volume and by assuming the fully dense material is “stress 
free” when J = A3 . This leads to the expression J = ĴA3  or, alternatively, Ĵ = J A3 . The 
quantity A2  has been defined such that it represents the bulk modulus of the fully dense 
matrix material when J ≈1− A3 . The variables !J  and A3  are constructed such that the 
pressure and its derivative are continuous at J = !J  with respect to the A0  and the !A2  
terms. This results in 1− A1 < "J < A3 . The B0  term replicates the initial load up and 
constant plateau region observed in uni-axial and hydrostatic compression tests, and the 
value of B0  is the plateau stress. The D0  incompressible Neo-Hookean term provides the 
baseline deviatoric stiffness and, while not obvious, is partially responsible for the 
increase in the apparent shear modulus with hydrostatic compression. The initial shear 
modulus is 2D0 . Lastly, the C0  coupling term provides additional deviatoric and 
hydrostatic stiffness. It is responsible for most of the increase in the secant shear modulus 
with hydrostatic compression. All parameters in the potential are required to be non-
negative, and C1 and C2  must satisfy the requirements identified in Appendix A. 
 
The polyconvexity of the potential is now examined term by term. The second derivatives 
of the A0 , !A2 , and B0  terms are 
 

∂2ϕA0
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∂J 2
= B0B1 exp B1 J −1( )( ) , 
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respectively.  As evident, the derivatives are non-negative for all J and therefore these 
terms are convex and thus polyconvex. The C0  term is examined in depth in Appendix A 
and is shown to be polyconvex subject to constraints on C1  and C2 .  (A conservative 
representation of the constraints are C1 ≥1+C2  and C2 ≥ 0 .) The compressible Neo-
Hookean term associated with  is polyconvex (Hartman and Neff, 2003) and coercive 
(e.g., Ebbing, 2010). Hence, the entire potential is coercive. Since each term in the 
potential is polyconvex, the entire potential is polyconvex. Lastly, the potential satisfies 
the goal that W →∞  as J→ 0+  and, when A0 > B0 , . 
 

4 VISCOELASTIC FORMULATION  
A general viscoelastic formulation for hyperelastic materials is presented in Simo and 
Hughes (1998) – see section 10.5.1. In it, the 2nd Piola-Kirchhoff stress tensor S is 
defined in terms of a convolution integral (Simo and Hughes, 1998) as 

S(t) = 2
∂We F t( )( )
∂C(t)

+ g t − s( )
−∞

t
∫ d

ds
2
∂Wv F s( )( )
∂C s( )

%

&
''

(

)
**ds , 

where We and Wv  designate the parts of the strain energy potential with and without 
viscoelastic behavior, respectively. The normalized relaxation function is represented by 
the Prony-series like expression 

g(t) = γ∞ + γ i exp −t / τ i( )
i=1

N

∑ , 

where 

γ∞ + γ i =1
i=1

N

∑ . 

For each term in the relaxation function, there is a corresponding internal variable tensor
H i . The stress and internal variables are updated using the recursion formulae  

Sn+1 = S
0
n+1 + γ iH

i
n+1

i=1

N

∑  

and 

Hn+1
i = exp −Δt

τ i
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&

'
( S0n+1 − Sn

0( ) , 

where S0 = 2∂Wv ∂C . The 2nd Piola-Kirchhoff stress is related to the Cauchy stress in the 
usual manner.  
 
Simo and Hughes (1998) included only deviatoric viscoelasticity in their original 
presentation. As it is unclear what components behave viscoelastically in an elastomeric 
foam, the above convolution integral incorporates viscoelasticity on a term-by-term basis.  
Since the pressure is dominated by the A0 , !A2 , and B0  terms in the potential, this 
approach provides an easy way to select which components behave viscoelastically.  

D0

J→∞



  LLNL-­‐TR-­‐666388 
 

  Page 9 of 17  

5 FIT TO EXPERIMENTAL DATA 
The current potential is motivated by experimental results for an elastomeric foam with a 
nominal sixty-five percent initial void volume fraction. The foam was tested in a uni-
axial strain experiment and a combined uni-axial stress/torsion experiment. In the 
combined test, a thin ring was axially compressed to different stretch levels and then 
torsionally sheared to seven or fifteen percent transvers strain. An axial stress-stretch 
curve, which extended into the lock-up region, was extracted from the force-displacement 
data collected in the uni-axial strain test assuming the deformation in the specimen was 
homogeneous. A secant shear modulus verses axial stretch curve was extracted from the 
combined stress/torsion experiment at the maximum shear strain level. The analysis of 
the test assumed the deformation in the specimen, prior to the imposed rotation, was that 
of uni-axial strain and that the effective shear modulus did not vary with radial position. 
This allowed the axial stress to be determined as a function of the axial stretch and the 
secant shear modulus to be determined as a function of the axial stretch and the shear 
strain level.  (For shear strains between one and fifteen percent, the secant shear modulus 
was observed to be nearly constant.) The axial stress vs. stretch curves obtained from the 
two experiments were in good agreement over approximately eighty-five percent of their 
range, but diverged, as expected, near lock-up due to non-homogeneous deformation in 
the uni-axial stress experiment. Based upon this agreement, it is assumed that the secant 
shear modulus values are reliable for compressions up to approximately the same level (
J ≈ 0.45 ). 
 
The axial stress, the transverse stress, and secant shear modulus were calculated for the 
current potential as a function of the axial stretch. The deformation was assumed to be 
uni-axial strain prior to the imposition of shear. The potential coefficients were curve fit 
by matching the axial stress and secant modulus data. The overall fit was evaluated along 
with the predicted transverse stress. Although no transverse stress data existed, it was 
assumed that the response should mirror that of the axial response, but with a smaller 
magnitude indicative of a material with a nearly zero Poisson’s ratio. The curve fit 
process used a least-squares fit based on percent error. The axial response and the two 
shear modulus fits were weighted so each contributed equally to the error metric.  
 
The value of A2  was obtained from a separate experiment that used a fully dense sample 
of the matrix material to measure the bulk modulus. Consequently, the A2  term was not 
included in the curve fit process; this was accomplished by setting !J  equal to zero. 
 
The predicted results, based upon the curve fit parameters, show very good agreement 
with the shear modulus and the axial response for all compressive stretch levels as 
apparent from Figures 1 and 2. Unfortunately, with these coefficient values the transverse 
stress does not behave monotonically with imposed axial compression but actually 
becomes tensile for a period prior to lock-up as evident in Figure 3. It was found that if 
the predicted shear modulus values were lower near lock-up, the transverse stress would 
behave as desired. Given the questions regarding the analysis of the combined uni-axial 
stress/torsion experiments in this region, discounting the shear modulus values near lock-
up seemed reasonable.  
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Figure 1 – Fitted and experimental secant shear modulus vs. relative volume 
 

 
 

Figure 2 – Fitted and experimental axial stress vs. relative volume 
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Figure 3 – Predicted transverse stress vs. relative volume 

 
 
A modified curve fitting process was developed that used the C0 , C1 , and C2 values 
obtained from the original curve fit. With C1  and C2  fixed, the original C0  value was 
reduced and the remaining parameters were obtained via the least-squares fit. The C0  
value was incrementally decreased until the model generated a transverse stress that 
behaved monotonically. For the current set of data, this amounted to a twelve percent 
reduction in C0 . Agreement between the shear modulus and axial stress was not 
significantly impacted as can be seen in Figures 4 and 5. While the largest differences for 
the shear modulus occur at lock-up, the axial stress demonstrates good agreement at lock-
up but reduced agreement at slightly smaller compression levels. This is not surprising 
since the A0  term dominates the axial stress near lock-up and the shear modulus does not 
depend upon it. Figure 6 shows the predicted transverse stress response with the modified 
coefficients. As desired, the behavior is monotonic. 
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Figure 4 – Fitted and experimental secant shear modulus vs. relative volume with 
modified coefficients 

 
 

 
 

Figure 5 – Fitted and experimental axial stress vs. relative volume with modified 
coefficients 
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Figure 6 – Predicted transverse stress vs. relative volume with modified coefficients 
 

6 DISCUSSION  
A strain energy potential appropriate for medium density, isotropic, elastomeric foams 
under primarily compressive conditions was assembled. The individual volumetric terms 
represent the initial ramp up and plateau region, the rapid stiffening region prior to lock-
up, and the bulk response in the fully consolidated region. The Neo-Hookean term 
provides the model with its baseline deviatoric stiffness. The coupling term causes the 
apparent shear modulus to increase with volumetric compression, beyond that due to the 
Neo-Hookean term. The potential was proven to be polyconvex and coercive. It is 
therefore stable for all admissible deformation states, and a minimizer exists for boundary 
value problems that use it. The potential and an accompanying viscoelastic option were 
implemented in the explicit finite element code DYNA3D (Zywicz and Lin, 2014) as 
material model 67.  
 
The model was curve fit to experimental data obtained from a uni-axial strain experiment 
and from a combined uni-axial stress with torsion experiment. The shear modulus data 
was extracted from the combined compression/torsion experiment by assuming the 
deformation prior to the imposition of torsion was that of uni-axial strain. When the best-
fit parameters were used to simulate the uni-axial strain experiment analytically, the 
transverse stress was predicted to be tensile at relative volumes near lock-up. When the 
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secant shear modulus values near lock-up were lowered a small amount, by lowering the 
coupling coefficient by twelve percent, and the other parameters were refit, the predicted 
transverse stress behaved physically and monotonically at all compressive levels and the 
predicted axial stress and shear modulus responses changed only slightly.  
 
It is speculated that the shear modulus data around lock-up was artificially high due, in 
part, to how the experiment was analyzed. While the use of uni-axial strain may be 
appropriate for relative volumes near unity, it clearly is not valid for relative volumes 
around lock-up where the material behavior is nearly incompressible. Hence, it is 
speculated that as the relative volume approached lock-up, the ring expanded radially at 
both the inner and outer radii, and the specimen stiffness increased for geometrical 
reasons.  Unfortunately, the experimental analysis assumed the increased stiffness was 
due entirely to material behavior and thus yielded artificially high shear modulus values 
near lock-up. While it is possible to simulate the combined compression/torsion 
experiment with finite elements and infer the parameter values via successive runs, a 
more productive approach is to develop a true uni-axial strain with torsion experiment – 
possibly with transverse stress instrumentation.  This would greatly simplify and improve 
the experimental analysis and curve fitting process.  
 
Appendix A 
 
The polyconvexity of several candidate isotropic strain energy terms ϕ(F) are 
investigated. All terms considered are functions of only the strain invariants I1  and J , 
and have real symmetric rank-two Hessian matrices, H. For a rank two matrix, if 
tr(H) ≥ 0 and Det(H) ≥ 0 , then H is positive semi-definite and its corresponding 
function is convex. (Recall, the trace of a matrix is the sum of its eigenvalues and the 
determinate is the product of its eigenvalues.) Attention is restricted to deformation 
gradients in which J > 0 , and the fact that I1 ≥ 3  is utilized. For completeness, it is 
assumed ϕ(F) =∞ , when J ≤ 0 . As each potential can be multiplied by a positive 
constant without changing the results, the positive constant is dropped for simplicity. 
 
I. Consider the term  

ϕ =
I1
J k
−3  

which, when expressed in terms of the deformation gradient, equals 

ϕ =
F 2

J k+2 3
−3 . 

The trace and determinate of its Hessian matrix are 

tr(H ) = I1
J k+2

(k + 23)(k +
5
3)+

2
J k+

2
3

 

and 

Det(H ) = −6I1
J 2k+8 3

(k + 23)(k +1) , 
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respectively. The trace is non-negative when k ≤ −5 3or k ≥ −2 3 , while the Det(H) is 
non-negative when −1< k < −2 3 . Thus, the term is convex and polyconvex only when 
k = −2 3 , i.e., ϕ = I1 −3 . Note, this form is that of an incompressible neo-Hookean solid 
that Ball (1977) showed to be polyconvex. 
 
II. Consider the term  

ϕ =
I1 −3
J k

 

which, when expressed in terms of the deformation gradient, equals 

ϕ =
F 2

−3
J k+2 3

. 

The trace and determinate of its Hessian matrix are 

tr(H ) = 1
J k+2

2J 4 3 + (k + 23)(k +
5
3)I1 −3k(k +1)( )  

and 

Det(H ) = −2
J 2k+8 3

I1(k + 23)(1+3k)+3k(k +1)( ) , 

respectively. The trace is non-negative when k ≥ −2 3 , and Det(H) is non-negative when 
−2 3≤ k ≤ −1 3 . Hence, the function is convex and thus polyconvex when 
−2 3≤ k ≤ −1 3 . 
 
III. Consider the term 

ϕ =
(I1 −3)

j

J k
 

with positive j and k values. When expressed in terms of the deformation gradient, it 
equals 

ϕ =

F 2

J 2 3
−3

"

#
$
$

%

&
'
'

j

J k
. 

The trace and determinate of its Hessian matrix are 

tr(H ) = (I1 −3)
j−2

9J k+2
( f1J

4 3 + f2 )  

and 

Det(H ) = 2 j(I1 −3)
2 j−3

9J 2k+8 3
g , 

respectively. Here 
 f1 =18 j I1(2 j −1)−3( ) , 

f2 = 9k
2 (I1 −3)

2 +3k(I1 −3) 3(I1 −3)+ 4 jI1( )+ 2 jI1 (3+ 2 j)I1 −15( ) , 
 

and
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g = I 21 8 j
2 + 6 j(k −1)− 9k(1+ k)( )− I16 j(1+3k)+81k(1+ k) . 

For all admissible values of J and I1 , f1 ≥ 0  when j ≥1 , and f2 ≥ 0  when j ≥1  and 
k ≥ 0 . Thus Det(H) is non-negative when j ≥1  and k ≥ 0 .   
 
The term g equals zero when 

j = (3
8
)
12+Δ(7−3k)−Δ2 (k −1)± (3+Δ)2 16+Δ2 (1+3k)2 +8Δ(1+ 5k + 6k2 )( )

(3+Δ)2
, 

where Δ = I1 −3 . (Note that since I1 ≥ 3 , Δ ≥ 0 .) Since only non-negative values of j are 
sought, only the positive root is considered. For a given value of k, the maximum value of 

j occurs when ∂j ∂Δ
k
= 0 , i.e., when Δ = 6 −2± 2(1+3k)

1+3k

#

$
%

&

'
( . Let Δ* denote the value of 

Δ at this point. Since Δ  must be non-negative, Δ* is defined as 

Δ* =max 0, 2 − 2
1+3k

#

$
%

&

'
( . 

When j equals 

j = (3
8
)
12+Δ*(7−3k)−Δ*2 (k −1)+ (3+Δ*)2 16+Δ*2 (1+3k)2 +8Δ*(1+ 5k + 6k2 )( )

(3+Δ*)2
, 

Det(H) is non-negative for all admissible values of I1 . 
 
For positive values of j and k, tr(H) and Det(H) are non-negative when 

j ≥max 1, (3
8
)
12+Δ*(7−3k)−Δ*2 (k −1)+ (3+Δ*)2 16+Δ*2 (1+3k)2 +8Δ*(1+ 5k + 6k2 )( )

(3+Δ*)2

$

%

&
&&

'

(

)
))

 

A conservative approximation for this restriction is j ≥ k +1 . Hence, the term is convex 
and polyconvex when these conditions are satisfied. 
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